MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A machine learning‐assisted multifunctional tactile sensor for smart prosthetics
A machine learning‐assisted multifunctional tactile sensor for smart prosthetics
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A machine learning‐assisted multifunctional tactile sensor for smart prosthetics
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A machine learning‐assisted multifunctional tactile sensor for smart prosthetics
A machine learning‐assisted multifunctional tactile sensor for smart prosthetics

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A machine learning‐assisted multifunctional tactile sensor for smart prosthetics
A machine learning‐assisted multifunctional tactile sensor for smart prosthetics
Journal Article

A machine learning‐assisted multifunctional tactile sensor for smart prosthetics

2023
Request Book From Autostore and Choose the Collection Method
Overview
The absence of tactile perception limits the dexterity of a prosthetic hand and its acceptance by amputees. Recreating the sensing properties of the skin using a flexible tactile sensor could have profound implications for prosthetics, whereas existing tactile sensors often have limited functionality with cross‐interference. In this study, we propose a machine‐learning‐assisted multifunctional tactile sensor for smart prosthetics, providing a human‐like tactile sensing approach for amputations. This flexible sensor is based on a poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)–melamine sponge, which enables the detection of force and temperature with low cross‐coupling owing to two separate sensing mechanisms: the open‐circuit voltage of the sensor as a force‐insensitive intrinsic variable to measure the absolute temperature and the resistance as a temperature‐insensitive extrinsic variable to measure force. Furthermore, by analyzing the unsteady heat conduction and characterizing it using real‐time thermal imaging, we demonstrated that the process of open‐circuit voltage variation resulting from the unsteady heat conduction is closely correlated with the heat‐conducting capabilities of materials, which can be utilized to discriminate between substances. Assisted by the decision tree algorithm, the device is endowed with thermal conductivity sensing ability, which allows it to identify 10 types of substances with an accuracy of 94.7%. Furthermore, an individual wearing an advanced myoelectric prosthesis equipped with the above sensor can sense pressure, temperature, and recognize different materials. We demonstrated that our multifunctional tactile sensor provides a new strategy to help amputees feel force, temperature and identify the material of objects without the aid of vision. image