MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network
Journal Article

A Correlation-Based Anomaly Detection Model for Wireless Body Area Networks Using Convolutional Long Short-Term Memory Neural Network

2022
Request Book From Autostore and Choose the Collection Method
Overview
As the Internet of Healthcare Things (IoHT) concept emerges today, Wireless Body Area Networks (WBAN) constitute one of the most prominent technologies for improving healthcare services. WBANs are made up of tiny devices that can effectively enhance patient quality of life by collecting and monitoring physiological data and sending it to healthcare givers to assess the criticality of a patient and act accordingly. The collected data must be reliable and correct, and represent the real context to facilitate right and prompt decisions by healthcare personnel. Anomaly detection becomes a field of interest to ensure the reliability of collected data by detecting malicious data patterns that result due to various reasons such as sensor faults, error readings and possible malicious activities. Various anomaly detection solutions have been proposed for WBAN. However, existing detection approaches, which are mostly based on statistical and machine learning techniques, become ineffective in dealing with big data streams and novel context anomalous patterns in WBAN. Therefore, this paper proposed a model that employs the correlations that exist in the different physiological data attributes with the ability of the hybrid Convolutional Long Short-Term Memory (ConvLSTM) techniques to detect both simple point anomalies as well as contextual anomalies in the big data stream of WBAN. Experimental evaluations revealed that an average of 98% of F1-measure and 99% accuracy were reported by the proposed model on different subjects of the datasets compared to 64% achieved by both CNN and LSTM separately.