MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data
A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data
A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data
A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data
Journal Article

A Sequential Framework for Improving Identifiability of FE Model Updating Using Static and Dynamic Data

2019
Request Book From Autostore and Choose the Collection Method
Overview
By virtue of the advances in sensing techniques, finite element (FE) model updating (FEMU) using static and dynamic data has been recently employed to improve identification on updating parameters. Using heterogeneous data can provide useful information to improve parameter identifiability in FEMU. It is worth noting that the useful information from the heterogeneous data may be diluted in the conventional FEM framework. The conventional FEMU framework in previous studies have used heterogeneous data at once to compute residuals in the objective function, and they are condensed to be a scalar. In this implementation, it should be careful to formulate the objective function with proper weighting factors to consider the scale of measurement and relative significances. Otherwise, the information from heterogeneous data cannot be efficiently utilized. For FEMU of the bridge, parameter compensation may exist due to mutual dependence among updating parameters. This aggravates the parameter identifiability to make the results of the FEMU worse. To address the limitation of the conventional FEMU method, this study proposes a sequential framework for the FEMU of existing bridges. The proposed FEMU method uses two steps to utilize static and dynamic data in a sequential manner. By using them separately, the influence of the parameter compensation can be suppressed. The proposed FEMU method is verified through numerical and experimental study. Through these verifications, the limitation of the conventional FEMU method is investigated in terms of parameter identifiability and predictive performance. The proposed FEMU method shows much smaller variabilities in the updating parameters than the conventional one by providing the better predictions than those of the conventional one in calibration and validation data. Based on numerical and experimental study, the proposed FEMU method can improve the parameter identifiability using the heterogeneous data and it seems to be promising and efficient framework for FEMU of the existing bridge.