MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A single transcription factor promotes both yield and immunity in rice
A single transcription factor promotes both yield and immunity in rice
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A single transcription factor promotes both yield and immunity in rice
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A single transcription factor promotes both yield and immunity in rice
A single transcription factor promotes both yield and immunity in rice

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A single transcription factor promotes both yield and immunity in rice
A single transcription factor promotes both yield and immunity in rice
Journal Article

A single transcription factor promotes both yield and immunity in rice

2018
Request Book From Autostore and Choose the Collection Method
Overview
Plants that are fighting microbial pathogens often divert resources that could be used for growth into the immune response. For crops, this translates into lower yield when plant immunity is activated. Wang et al. show that, in rice, reversible phosphorylation of a key transcription factor allows the plant to defend against fungal attack when needed but then, within days, reallocate resources back to growth (see the Perspective by Greene and Dong). Thus, both pathogen defense and crop yield can be sustained. Science , this issue p. 1026 ; see also p. 976 A transcription factor that builds a high-yielding rice plant also supports immune responses. Plant immunity often penalizes growth and yield. The transcription factor Ideal Plant Architecture 1 (IPA1) reduces unproductive tillers and increases grains per panicle, which results in improved rice yield. Here we report that higher IPA1 levels enhance immunity. Mechanistically, phosphorylation of IPA1 at amino acid Ser 163 within its DNA binding domain occurs in response to infection by the fungus Magnaporthe oryzae and alters the DNA binding specificity of IPA1. Phosphorylated IPA1 binds to the promoter of the pathogen defense gene WRKY45 and activates its expression, leading to enhanced disease resistance. IPA1 returns to a nonphosphorylated state within 48 hours after infection, resuming support of the growth needed for high yield. Thus, IPA1 promotes both yield and disease resistance by sustaining a balance between growth and immunity.