MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification
A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification
A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification
A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification
Journal Article

A Facile Method to Control Pore Structure of PVDF/SiO2 Composite Membranes for Efficient Oil/Water Purification

2021
Request Book From Autostore and Choose the Collection Method
Overview
The use of poly(vinylidene fluoride) (PVDF) microfiltration (MF) membranes to purify oily water has received much attention. However, it is challenging to obtain high-performance PVDF microfiltration membranes due to severe surface fouling and rapid decline of permeability. This study explored a new approach to fabricate high-performance PVDF/silica (SiO2) composite membrane via the use of a polymer solution featuring lower critical solution temperature (LCST) characteristics and the non-solvent thermally induced phase separation method (NTIPS). Coupling with morphological observations, the membrane formation kinetics were analyzed in depth to understand the synergistic effect between the LCST solution properties and fabrication conditions in NTIPS. Utilizing such a synergistic effect, the transition from finger-like macrovoid pores to bi-continuous highly connected pores could be flexibly tuned by increasing the PVDF concentration and the weight ratio of SiO2/PVDF in the dope solution and by raising the coagulation temperature to above the LCST of the solution. The filtration experiments with surfactant-stabilized oil-water emulsion showed that the permeation flux of the PVDF/SiO2 composite membranes was higher than 318 L·m−2·h−1·bar−1 and the rejection above 99.2%. It was also shown that the PVDF/SiO2 composite membranes, especially those fabricated above the LCST, demonstrated better hydrophilicity, which resulted in significant enhancement in the anti-fouling properties for oil/water emulsion separation. Compared to the benchmark pure PVDF membrane in oily water purification, the optimal composite membrane T70 was demonstrated via the 3-cycle filtration experiments with a significantly improved flux recovery ratio (Frr) and minimal reduced irreversible fouling (Rir). Overall, with the developed method in this work, facile procedure to tune the membrane morphology and pore structure was demonstrated, resulting in high performance composite membranes suitable for oil/water emulsion separation.

MBRLCatalogueRelatedBooks