MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals
Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals
Journal Article

Automated Characterization of Cyclic Alternating Pattern Using Wavelet-Based Features and Ensemble Learning Techniques with EEG Signals

2021
Request Book From Autostore and Choose the Collection Method
Overview
Sleep is highly essential for maintaining metabolism of the body and mental balance for increased productivity and concentration. Often, sleep is analyzed using macrostructure sleep stages which alone cannot provide information about the functional structure and stability of sleep. The cyclic alternating pattern (CAP) is a physiological recurring electroencephalogram (EEG) activity occurring in the brain during sleep and captures microstructure of the sleep and can be used to identify sleep instability. The CAP can also be associated with various sleep-related pathologies, and can be useful in identifying various sleep disorders. Conventionally, sleep is analyzed using polysomnogram (PSG) in various sleep laboratories by trained physicians and medical practitioners. However, PSG-based manual sleep analysis by trained medical practitioners is onerous, tedious and unfavourable for patients. Hence, a computerized, simple and patient convenient system is highly desirable for monitoring and analysis of sleep. In this study, we have proposed a system for automated identification of CAP phase-A and phase-B. To accomplish the task, we have utilized the openly accessible CAP sleep database. The study is performed using two single-channel EEG modalities and their combination. The model is developed using EEG signals of healthy subjects as well as patients suffering from six different sleep disorders namely nocturnal frontal lobe epilepsy (NFLE), sleep-disordered breathing (SDB), narcolepsy, periodic leg movement disorder (PLM), insomnia and rapid eye movement behavior disorder (RBD) subjects. An optimal orthogonal wavelet filter bank is used to perform the wavelet decomposition and subsequently, entropy and Hjorth parameters are extracted from the decomposed coefficients. The extracted features have been applied to different machine learning algorithms. The best performance is obtained using ensemble of bagged tress (EBagT) classifier. The proposed method has obtained the average classification accuracy of 84%, 83%, 81%, 78%, 77%, 76% and 72% for NFLE, healthy, SDB, narcolepsy, PLM, insomnia and RBD subjects, respectively in discriminating phases A and B using a balanced database. Our developed model yielded an average accuracy of 78% when all 77 subjects including healthy and sleep disordered patients are considered. Our proposed system can assist the sleep specialists in an automated and efficient analysis of sleep using sleep microstructure.