MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Accurate molecular polarizabilities with coupled cluster theory and machine learning
Accurate molecular polarizabilities with coupled cluster theory and machine learning
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Accurate molecular polarizabilities with coupled cluster theory and machine learning
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Accurate molecular polarizabilities with coupled cluster theory and machine learning
Accurate molecular polarizabilities with coupled cluster theory and machine learning

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Accurate molecular polarizabilities with coupled cluster theory and machine learning
Accurate molecular polarizabilities with coupled cluster theory and machine learning
Journal Article

Accurate molecular polarizabilities with coupled cluster theory and machine learning

2019
Request Book From Autostore and Choose the Collection Method
Overview
The molecular dipole polarizability describes the tendency of a molecule to change its dipole moment in response to an applied electric field. This quantity governs key intra- and intermolecular interactions, such as induction and dispersion; plays a vital role in determining the spectroscopic signatures of molecules; and is an essential ingredient in polarizable force fields. Compared with other ground-state properties, an accurate prediction of the molecular polarizability is considerably more difficult, as this response quantity is quite sensitive to the underlying electronic structure description. In this work, we present highly accurate quantum mechanical calculations of the static dipole polarizability tensors of 7,211 small organic molecules computed using linear response coupled cluster singles and doubles theory (LRCCSD). Using a symmetry-adapted machine-learning approach, we demonstrate that it is possible to predict the LR-CCSD molecular polarizabilities of these small molecules with an error that is an order of magnitude smaller than that of hybrid density functional theory (DFT) at a negligible computational cost. The resultant model is robust and transferable, yielding molecular polarizabilities for a diverse set of 52 larger molecules (including challenging conjugated systems, carbohydrates, small drugs, amino acids, nucleobases, and hydrocarbon isomers) at an accuracy that exceeds that of hybrid DFT. The atom-centered decomposition implicit in our machine-learning approach offers some insight into the shortcomings of DFT in the prediction of this fundamental quantity of interest.