MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air
Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air
Journal Article

Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air

2020
Request Book From Autostore and Choose the Collection Method
Overview
Mineralogical and geochemical data are essential for estimating the effects of long-range transport of Asian dust on the atmosphere, biosphere, cryosphere, and pedosphere. However, consistent long-term data sets of dust samples are rare. This study analyzed 25 samples collected during 14 Asian dust events occurring between 2005 and 2018 on the Korean Peninsula and compared them to 34 soil samples (<20 µm) obtained from the Mongolian Gobi Desert, which is a major source of Asian dust. The mineralogical and geochemical characteristics of Asian dust were consistent with those of fine source soils in general. In dust, clay minerals were most abundant, followed by quartz, plagioclase, K-feldspar, calcite, and gypsum. The trace element contents were influenced by the mixing of dust with polluted air and the fractionation of rare earth elements. Time-series analyses of the geochemical data of dust, combined with satellite remote sensing images, showed a significant increase in the Ca content in the dust crossing the Chinese Loess Plateau and the sandy deserts of northern China. Calcareous sediments in the sandy deserts and pedogenic calcite-rich loess are probable sources of additional Ca. Dust-laden air migrating toward Korea mixes with polluted air over East Asia. Gypsum, a minor mineral in source soils, was formed by the reaction between calcite and pollutants. This study describes not only the representative properties of Asian dust but also their variation according to the migration path, fractionation, and atmospheric reactions.