MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification
Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification
Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification
Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification
Journal Article

Convective-Scale Structure and Evolution during a High-Resolution Simulation of Tropical Cyclone Rapid Intensification

2010
Request Book From Autostore and Choose the Collection Method
Overview
The role of convective-scale processes in a 1.67-km mesoscale model simulation of the rapid intensification (RI) of Hurricane Dennis (2005) is presented. The structure and evolution of inner-core precipitating areas during RI, the statistical properties of precipitation during times experiencing vigorous convection (termed convective bursts here) and how they differ from nonburst times, possible differences in convective bursts associated with RI and those not associated with RI, and the impacts of precipitation morphology on the vortex-scale structure and evolution during RI are all examined. The onset of RI is linked to an increase in the areal extent of convective precipitation in the inner core, while the inner-core stratiform precipitating area remains unchanged and the intensity increases only after RI has begun. RI is not tied to a dramatic increase in the number of convective bursts nor in the characteristics of the bursts, such as burst intensity. Rather, the immediate cause of RI is a significant increase in updraft mass flux, particularly in the lowest 1.5 km. This increase in updraft mass flux is accomplished primarily by updrafts on the order of 1–2 m s−1, representing the bulk of the vertical motion distribution. However, a period of enhanced updraft mass flux in the midlevels by moderate to strong (>5 m s−1) updrafts located inside the radius of maximum winds occurs ∼6 h prior to RI, indicating a synergistic relationship between convective bursts and the background secondary circulation prior to RI. This result supports the assertion that both buoyantly driven updrafts and slantwise near-neutral ascent are important features in eyewall structure, evolution, and intensification, including RI.

MBRLCatalogueRelatedBooks