MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation
Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation
Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation
Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation
Journal Article

Mechanical Cavity Creation with Curettage and Vacuum Suction (Q-VAC) in Lytic Vertebral Body Lesions with Posterior Wall Dehiscence and Epidural Mass before Cement Augmentation

2019
Request Book From Autostore and Choose the Collection Method
Overview
Background and Objectives: We describe a novel technique for percutaneous tumor debulking and cavity creation in patients with extensive lytic lesions of the vertebral body including posterior wall dehiscence prior to vertebral augmentation (VA) procedures. The mechanical cavity is created with a combination of curettage and vacuum suction (Q-VAC). Balloon kyphoplasty and vertebral body stenting are used to treat neoplastic vertebral lesions and might reduce the rate of cement leakage, especially in presence of posterior wall dehiscence. However, these techniques could theoretically lead to increased intravertebral pressure during balloon inflation with possible mobilization of soft tissue tumor through the posterior wall, aggravation of spinal stenosis, and resultant complications. Creation of a void or cavity prior to balloon expansion and/or cement injection would potentially reduce these risks. Materials and Methods: A curette is coaxially inserted in the vertebral body via transpedicular access trocars. The intravertebral neoplastic soft tissue is fragmented by multiple rotational and translational movements. Subsequently, vacuum aspiration is applied via one of two 10 G cannulas that had been introduced directly into the fragmented lesion, while saline is passively flushed via the contralateral cannula, with lavage of the fragmented solid and fluid-necrotic tumor parts. Results: We applied the Q-VAC technique to 35 cases of thoracic and lumbar extreme osteolysis with epidural mass before vertebral body stenting (VBS) cement augmentation. We observed extravertebral cement leakage on postoperative CT in 34% of cases, but with no clinical consequences. No patients experienced periprocedural respiratory problems or new or worsening neurological deficit. Conclusion: The Q-VAC technique, combining mechanical curettage and vacuum suction, is a safe, inexpensive, and reliable method for percutaneous intravertebral tumor debulking and cavitation prior to VA. We propose the Q-VAC technique for cases with extensive neoplastic osteolysis, especially if cortical boundaries of the posterior wall are dehiscent and an epidural soft tissue mass is present.