MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach
Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach
Journal Article

Cell Surface Fibroblast Activation Protein-2 (Fap2) of Fusobacterium nucleatum as a Vaccine Candidate for Therapeutic Intervention of Human Colorectal Cancer: An Immunoinformatics Approach

2023
Request Book From Autostore and Choose the Collection Method
Overview
Colorectal cancer (CRC) is one of the most common cancers and is the second-highest in cancer-related deaths worldwide. The changes in gut homeostasis and microbial dysbiosis lead to the initiation of the tumorigenesis process. Several pathogenic gram-negative bacteria including Fusobacterium nucleatum are the principal contributors to the induction and pathogenesis of CRC. Thus, inhibiting the growth and survival of these pathogens can be a useful intervention strategy. Fibroblast activation protein-2 (Fap2) is an essential membrane protein of F. nucleatum that promotes the adherence of the bacterium to the colon cells, recruitment of immune cells, and induction of tumorigenesis. The present study depicts the design of an in silico vaccine candidate comprising the B-cell and T-cell epitopes of Fap2 for improving cell-mediated and humoral immune responses against CRC. Notably, this vaccine participates in significant protein–protein interactions with human Toll-like receptors, especially with TLR6 reveals, which is most likely to be correlated with its efficacy in eliciting potential immune responses. The immunogenic trait of the designed vaccine was verified by immune simulation approach. The cDNA of the vaccine construct was cloned in silico within the expression vector pET30ax for protein expression. Collectively, the proposed vaccine construct may serve as a promising therapeutic in intervening F. nucleatum-induced human CRC.