MbrlCatalogueTitleDetail

Do you wish to reserve the book?
NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production
NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production
NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production
NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production
Journal Article

NDUFA4L2 Regulated by HIF-1α Promotes Metastasis and Epithelial–Mesenchymal Transition of Osteosarcoma Cells Through Inhibiting ROS Production

2020
Request Book From Autostore and Choose the Collection Method
Overview
Osteosarcoma (OS) accounts for a large proportion of the types of bone tumors that are newly diagnosed, and is a relatively common bone tumor. However, there are still no effective treatments for this affliction. One interesting avenue is related to the mitochondrial NDUFA4L2 protein, which is encoded by the nuclear gene and is known to be a critical mediator in the regulation of cell survival. Thus, in this study, we aimed to investigate the effect of NDUFA4L2 upon the metastasis and epithelial–mesenchymal transition of OS. We found that NDUFA4L2 protein expression was upregulated in hypoxic conditions. We also used 2-ME and DMOG, which are HIF-1α inhibitors and agonists, respectively, to assess the effects related to decreasing or increasing HIF-1α expression. 2-ME caused a significant decrease of NDUFA4L2 expression and DMOG had the opposite effect. It was obvious that down-regulation of NDUFA4L2 had a direct interaction with the apoptosis of OS cells. Western blotting, wound healing analyses, Transwell invasion assays, and colony formation assays all indicated and supported the conclusion that NDUFA4L2 promoted OS cell migration, invasion, proliferation, and the epithelial–mesenchymal transition. During experiments, we incidentally discovered that autophagy and the ROS inhibitor could be used to facilitate the rescuing of tumor cells whose NDUFA4L2 was knocked down. Our findings will help to further elucidate the dynamics underlying the mechanism of OS cells and have provided a novel therapeutic target for the treatment of OS.