MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Thermal benefits of melanism in cordylid lizards: a theoretical and field test
Thermal benefits of melanism in cordylid lizards: a theoretical and field test
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Thermal benefits of melanism in cordylid lizards: a theoretical and field test
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Thermal benefits of melanism in cordylid lizards: a theoretical and field test
Thermal benefits of melanism in cordylid lizards: a theoretical and field test

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Thermal benefits of melanism in cordylid lizards: a theoretical and field test
Thermal benefits of melanism in cordylid lizards: a theoretical and field test
Journal Article

Thermal benefits of melanism in cordylid lizards: a theoretical and field test

2009
Request Book From Autostore and Choose the Collection Method
Overview
The hypothesis that low skin reflectance (melanism) provides an advantage for thermoregulation under cold conditions has received mixed support in ectothermic vertebrates. We selected a model system, three allopatric closely related species of cordylid lizards that differ in skin reflectance, to test this hypothesis. Cordylus niger and Cordylus oelofseni are melanistic and inhabit peninsular and montane areas, respectively, whereas Cordylus cordylus is more widespread and inhabits low inland areas. By combining theoretical, experimental, and field data on these species, we demonstrate that the difference in body temperature (Tb) between melanistic and non‐melanistic lizards under ecologically relevant climate variation ranged from 0° to 2°C. Despite its small magnitude, however, the faster heating rate and higher Tb of melanistic species relative to non‐melanistic species conferred an advantage under cold conditions. Comparison of habitat thermal quality (dₑ) and thermal accuracy (db) across species indicated that, in winter, melanism conferred the greatest advantage during small windows of thermal opportunity. This finding was most pronounced for C. oelofseni, which is most constrained by cold temperatures in its habitat. By contrast, due to their rock‐dwelling habits, melanistic and non‐melanistic species benefited from rock refugia in summer, giving similar levels of thermoregulatory effectiveness across species, regardless of skin reflectance. This study therefore demonstrates that skin reflectance variation across cordylids has significant effects on their thermal balance. Furthermore, studies investigating the role of varying skin reflectance in field populations and species should incorporate fine and broad temporal scales (daily, monthly, and seasonal), environmental variability, and cost–benefit trade‐offs of thermoregulation.