MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Met, metastasis, motility and more
Met, metastasis, motility and more
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Met, metastasis, motility and more
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Met, metastasis, motility and more
Met, metastasis, motility and more

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Met, metastasis, motility and more
Met, metastasis, motility and more
Journal Article

Met, metastasis, motility and more

2003
Request Book From Autostore and Choose the Collection Method
Overview
Key Points The Met receptor tyrosine kinase binds to, and is activated by, its specific ligand, the growth and motility factor HGF/SF (hepatocyte growth factor/scatter factor). HGF/SF shares its overall domain structure with proteinases of the plasminogen family; the domain structure of Met is unique and its extracellular sequence is related to semaphorins and the semaphorin receptors (plexins). Met activation results in tyrosine phosphorylation of the receptor at a unique bidentate docking site in the carboxy-terminal end of Met, which recruits signalling molecules such as the scaffolding adaptor Gab1 (growth-factor-receptor-bound protein 2 (Grb2)-associated binder 1). Gab1 mediates most of the complex cellular responses to Met activation. The juxtamembrane domain of Met contains an additional docking site that, when phosphorylated, recruits Cbl, a ubiquitin ligase, which results in Met ubiquitylation, endocytosis and degradation. Met activation can induce proliferation, dissociation of epithelial cells (scattering) and motility. Furthermore, signals from Met elicit a complex morphogenic response — the formation of branched tubules from epithelial cells grown in a collagen matrix. During development, Met and HGF/SF are essential for the growth and survival of epithelial cell types and for migration of muscle progenitors. In adult physiology, Met activity prevents tissue damage and enhances liver regeneration. Met is activated in human cancer by several molecular mechanisms, for example: mutations that alter the sequence and activity of the kinase domain; by overexpression; or by simultaneous expression of receptor and ligand, which results in the autocrine stimulation of cancer cells. Met and HGF/SF are important targets for cancer therapy and many efforts are directed towards the identification of inhibitors that are active in vivo . Hepatocyte growth factor/scatter factor and its receptor, the tyrosine kinase Met, arose late in evolution and are unique to vertebrates. In spite of this, Met uses molecules such as Gab1 — homologues of which are present in Caenorhabditis elegans and Drosophila melanogaster — for downstream signalling. Pivotal roles for Met in development and cancer have been established: Met controls cell migration and growth in embryogenesis; it also controls growth, invasion and metastasis in cancer cells; and activating Met mutations predispose to human cancer.