MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis
Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis
Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis
Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis
Journal Article

Vertical Structure of a Springtime Smoky and Humid Troposphere Over the Southeast Atlantic From Aircraft and Reanalysis

2024
Request Book From Autostore and Choose the Collection Method
Overview
The springtime atmosphere over the southeast Atlantic Ocean (SEA) is subjected to a consistent layer of biomass burning (BB) smoke from widespread fires on the African continent. An elevated humidity signal is coincident with this layer, consistently proportional to the amount of smoke present. The combined humidity and BB aerosol has potentially significant radiative and dynamic impacts. Here, we use aircraft-based observations from the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) deployments in conjunction with reanalyses to characterize covariations in humidity and BB smoke across the SEA. The observed plume–vapor relationship, and its agreement with the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and Copernicus Atmosphere Monitoring Service (CAMS) reanalysis, persists across all observations, although the magnitude of the relationship varies as the season progresses. Water vapor is well represented by the reanalyses, while CAMS tends to underestimate carbon monoxide especially under high BB. While CAMS aerosol optical depth (AOD) is generally overestimated relative to ORACLES AOD, the observations show a consistent relationship between carbon monoxide (CO) and aerosol extinction, demonstrating the utility of the CO tracer to understanding vertical aerosol distribution. We next use k-means clustering of the reanalyses to examine multi-year seasonal patterns and distributions. We identify canonical profile types of humidity and of CO, allowing us to characterize changes in vapor and BB atmospheric structures, and their impacts as they covary. While the humidity profiles show a range in both total water vapor concentration and in vertical structure, the CO profiles primarily vary in terms of maximum concentration, with similar vertical structures in each. The distribution of profile types varies spatiotemporally across the SEA region and through the season, ranging from largely one type in the northeast and southwest to more evenly distributed between multiple types where air masses meet in the middle of the SEA. These distributions follow patterns of transport from the humid, smoky source region (greatest influence in the northeast of the SEA) and the seasonal changes in both humidity and smoke (increasing and decreasing through the season, respectively). With this work, we establish a framework for a more complete analysis of the broader radiative and dynamical effects of humid aerosols over the SEA.