MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria
Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria
Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria
Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria
Journal Article

Circulating Neutrophil Extracellular Traps and Neutrophil Activation Are Increased in Proportion to Disease Severity in Human Malaria

2019
Request Book From Autostore and Choose the Collection Method
Overview
Neutrophil activation results in Plasmodium parasite killing in vitro, but neutrophil products including neutrophil extracellular traps (NETs) mediate host organ damage and may contribute to severe malaria. The role of NETs in the pathogenesis of severe malaria has not been examined. In Papua, Indonesia, we enrolled adults with symptomatic Plasmodium falciparum (n = 47 uncomplicated, n = 8 severe), Plasmodium vivax (n = 37), or Plasmodium malariae (n = 14) malaria; asymptomatic P falciparum (n = 19) or P vivax (n = 21) parasitemia; and healthy adults (n = 23) without parasitemia. Neutrophil activation and NETs were quantified by immunoassays and microscopy and correlated with parasite biomass and disease severity. In patients with symptomatic malaria, neutrophil activation and NET counts were increased in all 3 Plasmodium species. In falciparum malaria, neutrophil activation and NET counts positively correlated with parasite biomass (Spearman rho = 0.41, P = .005 and r2 = 0.26, P = .002, respectively) and were significantly increased in severe disease. In contrast, NETs were inversely associated with parasitemia in adults with asymptomatic P falciparum infection (r2 = 0.24, P = .031) but not asymptomatic P vivax infection. Although NETs may inhibit parasite growth in asymptomatic P falciparum infection, neutrophil activation and NET release may contribute to pathogenesis in severe falciparum malaria. Agents with potential to attenuate these processes should be evaluated.