MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance
Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance
Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance
Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance
Journal Article

Functional and Transcriptome Analysis Reveal Specific Roles of Dimocarpus longan DlRan3A and DlRan3B in Root Hair Development, Reproductive Growth, and Stress Tolerance

2024
Request Book From Autostore and Choose the Collection Method
Overview
Ran GTPases play essential roles in plant growth and development. Our previous studies revealed the nuclear localization of DlRan3A and DlRan3B proteins and proposed their functional redundancy and distinction in Dimocarpus longan somatic embryogenesis, hormone, and abiotic stress responses. To further explore the possible roles of DlRan3A and DlRan3B, gene expression analysis by qPCR showed that their transcripts were both more abundant in the early embryo and pulp in longan. Heterologous expression of DlRan3A driven by its own previously cloned promoter led to stunted growth, increased root hair density, abnormal fruits, bigger seeds, and enhanced abiotic stress tolerance. Conversely, constitutive promoter CaMV 35S (35S)-driven expression of DlRan3A, 35S, or DlRan3B promoter-controlled expression of DlRan3B did not induce the alterations in growth phenotype, while they rendered different hypersensitivities to abiotic stresses. Based on the transcriptome profiling of longan Ran overexpression in tobacco plants, we propose new mechanisms of the Ran-mediated regulation of genes associated with cell wall biosynthesis and expansion. Also, the transgenic plants expressing DlRan3A or DlRan3B genes controlled by 35S or by their own promoter all exhibited altered mRNA levels of stress-related and transcription factor genes. Moreover, DlRan3A overexpressors were more tolerant to salinity, osmotic, and heat stresses, accompanied by upregulation of oxidation-related genes, possibly involving the Ran-RBOH-CIPK network. Analysis of a subset of selected genes from the Ran transcriptome identified possible cold stress-related roles of brassinosteroid (BR)-responsive genes. The marked presence of genes related to cell wall biosynthesis and expansion, hormone, and defense responses highlighted their close regulatory association with Ran.