MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar
A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar
Journal Article

A Multi-Feature Fusion Approach for Road Surface Recognition Leveraging Millimeter-Wave Radar

2025
Request Book From Autostore and Choose the Collection Method
Overview
With the rapid progress of intelligent vehicle technology, the accurate recognition of road surface types and conditions has emerged as a crucial technology for improving the safety and comfort levels in autonomous driving. This paper puts forward a multi-feature fusion approach for road surface identification. Relying on a 24 GHz millimeter-wave radar, statistical features are combined with wavelet transform techniques. This combination enables the efficient classification of diverse road surface types and conditions. Firstly, the discriminability of radar echo signals corresponding to different road surface types is verified via statistical analysis. During this process, six-dimensional statistical features that display remarkable differences are extracted. Subsequently, a novel radar data reconstruction approach is presented. This method involves fitting discrete echo signals into coordinate curves. Then, discrete wavelet transform is utilized to extract both low-frequency and high-frequency features, thereby strengthening the spatio-temporal correlation of the signals. The low-frequency information serves to capture general characteristics, whereas the high-frequency information reflects detailed features. The statistical features and wavelet transform features are fused at the feature level, culminating in the formation of a 56-dimensional feature vector. Four machine learning models, namely the Wide Neural Network (WNN), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Kernel methods, are employed as classifiers for both training and testing purposes. Experiments were executed with 8865 samples obtained from a real-vehicle platform. These samples comprehensively represented 12 typical road surface types and conditions. The experimental outcomes clearly indicate that the proposed method is capable of attaining a road surface type identification accuracy as high as 94.2%. As a result, it furnishes an efficient and cost-efficient road perception solution for intelligent driving systems. This research validates the potential application of millimeter-wave radar in intricate road environments and offers both theoretical underpinning and practical support for the advancement of autonomous driving technology.