MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts
Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts
Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts
Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts
Journal Article

Electrical Properties of Taste Sensors with Positively Charged Lipid Membranes Composed of Amines and Ammonium Salts

2023
Request Book From Autostore and Choose the Collection Method
Overview
Currently, taste sensors utilizing lipid polymer membranes are utilized to assess the taste of food products quantitatively. During this process, it is crucial to identify and quantify basic tastes, e.g., sourness and sweetness, while ensuring that there is no response to tasteless substances. For instance, suppression of responses to anions, like tasteless NO3− ions contained in vegetables, is essential. However, systematic electrochemical investigations have not been made to achieve this goal. In this study, we fabricated three positively charged lipid polymer membranes containing oleylamine (OAm), trioctylemethylammonium chloride (TOMACl), or tetradodecylammonium bromide (TDAB) as lipids, and sensors that consist of these membranes to investigate the potential change characteristics of these sensors in solutions containing different anions (F−, Cl−, Br−, NO3−, I−). The ability of each anion solution to reduce the positive charge on membranes and shift the membrane potential in the negative direction was in the following order: I− > NO3− > Br− > Cl− > F−. This order well reflected the order of size of the hydrated ions, related to their hydration energy. Additionally, the OAm sensor displayed low ion selectivity, whereas the TOMACl and TDAB sensors showed high ion selectivity related to the OAm sensor. Such features in ion selectivity are suggested to be due to the variation in positive charge with the pH of the environment and packing density of the OAm molecule in the case of the OAm sensor and due to the strong and constant positive charge created by complete ionization of lipids in the case of TOMACl and TDAB sensors. Furthermore, it was revealed that the ion selectivity varies by changing the lipid concentration in each membrane. These results contribute to developing sensor membranes that respond to different anion species selectively and creating taste sensors capable of suppressing responses to tasteless anions.