MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations
Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations
Journal Article

Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations

2012
Request Book From Autostore and Choose the Collection Method
Overview
Newly acquired declarative memory traces are believed to be reactivated during NonREM sleep to promote their hippocampo-neocortical transfer for long-term storage. Yet it remains a major challenge to unravel the underlying neuronal mechanisms. Using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) recordings in humans, we show that sleep spindles play a key role in the reactivation of memory-related neocortical representations. On separate days, participants either learned face-scene associations or performed a visuomotor control task. Spindle-coupled reactivation of brain regions representing the specific task stimuli was traced during subsequent NonREM sleep with EEG-informed fMRI. Relative to the control task, learning face-scene associations triggered a stronger combined activation of neocortical and hippocampal regions during subsequent sleep. Notably, reactivation did not only occur in temporal synchrony with spindle events but was tuned by ongoing variations in spindle amplitude. These learning-related increases in spindle-coupled neocortical activity were topographically specific because reactivation was restricted to the face- and scene-selective visual cortical areas previously activated during pre-sleep learning. Spindle-coupled hippocampal activation was stronger the better the participant had performed at prior learning. These results are in agreement with the notion that sleep spindles orchestrate the reactivation of new hippocampal–neocortical memories during sleep. ► Subjects learned face-scene associations or performed a visuomotor control task. ► EEG-fMRI during subsequent NREM sleep revealed spindle-related brain activation. ► Contrasting learning and control nights revealed spindle-related reactivation. ► Reactivation was restricted to category-specific neocortical sites and hippocampus. ► Reactivation was time-locked to sleep spindles and dependent on their amplitude.