MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media
Journal Article

Optical Spectroscopic Detection of Mitochondrial Biomarkers (FMN and NADH) for Hypothermic Oxygenated Machine Perfusion: A Comparative Study in Different Perfusion Media

2025
Request Book From Autostore and Choose the Collection Method
Overview
Ex situ machine perfusion has emerged as a pivotal technique for organ preservation and pre-transplant viability assessment, where the real-time monitoring of mitochondrial biomarkers—flavin mononucleotide (FMN) and nicotinamide adenine dinucleotide (NADH)—could significantly mitigate ischemia-reperfusion injury risks. This study develops a non-invasive optical method combining fluorescence and UV-visible spectrophotometry to quantify FMN and NADH in hypothermic oxygenated perfusion media. Calibration curves revealed linear responses for both biomarkers in absorption and fluorescence (FMN: λex = 445 nm, λem = 530–540 nm; NADH: λex = 340 nm, λem = 465 nm) at concentrations < 100 μg mL−1. However, NADH exhibited nonlinear fluorescence above 100 μg mL−1, requiring shifted excitation to 365 nm for reliable detection. Spectroscopic analysis further demonstrated how perfusion solution composition alters FMN/NADH fluorescence properties, with consistent reproducibility across media. The method’s robustness was validated through comparative studies in clinically relevant solutions, proposing a strategy for precise biomarker quantification without invasive sampling. These findings establish a foundation for real-time, optical biosensor development to enhance organ perfusion monitoring. By bridging spectroscopic principles with clinical needs, this work advances translational sensor technologies for transplant medicine, offering a template for future device integration.