MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation
Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation
Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation
Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation
Journal Article

Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation

2022
Request Book From Autostore and Choose the Collection Method
Overview
Spatial transcriptomics is an emerging technology requiring costly reagents and considerable skills, limiting the identification of transcriptional markers related to histology. Here, we show that predicted spatial gene-expression in unmeasured regions and tissues can enhance biologists’ histological interpretations. We developed the Deep learning model for Spatial gene Clusters and Expression, DeepSpaCE, and confirmed its performance using the spatial-transcriptome profiles and immunohistochemistry images of consecutive human breast cancer tissue sections. For example, the predicted expression patterns of SPARC , an invasion marker, highlighted a small tumor-invasion region difficult to identify using raw spatial transcriptome data alone because of a lack of measurements. We further developed semi-supervised DeepSpaCE using unlabeled histology images and increased the imputation accuracy of consecutive sections, enhancing applicability for a small sample size. Our method enables users to derive hidden histological characters via spatial transcriptome and gene annotations, leading to accelerated biological discoveries without additional experiments.