MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field
Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field
Journal Article

Effects of fertilizer practice on fungal and actinobacterial cellulolytic community with different humified particle-size fractions in double-cropping field

2021
Request Book From Autostore and Choose the Collection Method
Overview
Cellulose plays an important role in maintaining or improving soil carbon (C) cycling and soil fertility of paddy field. There had close relationship between functional cellulose genes ( cbhI and GH48 ) with characterize of soil organic matter chemical components (fulvic acid and humic acid) and soil physical fractions. However, there is still limited information about how functional cellulose degradation response to long-term fertilizer management and their relative importance for C sequestration under the double-cropping rice paddy field in southern of China. Therefore, the objective of this study were investigated the effects of 34-years long-term fertilizer regime on community abundance of cbhI and GH48 genes in five soil particle-size fractions (> 2000 μm, 2000–200 μm, 200–50 μm, 50–2 μm and 2–0.1 μm) by using polarization magic angle spinning 13 C nuclear magnetic resonance spectroscopy. The field experiment was included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and without fertilizer input as a control (CK). The results showed that distribution of soil humus and cellulolytic microbial community abundance was significant increased under long-term application of crop residue and organic manure condition. And the FA, HA and HM C contents in > 2000 μm and 2000–50 μm fractions with MF, RF and OM treatments were significant higher than that of CK treatment. Meanwhile, the alkyl C and Oalkyl C groups of FA and HA in > 2000 μm fraction with MF, RF, OM and CK treatments were higher than that of the other fractions. There had higher AL% and lower ARO% of FA and HA in different particle-size fractions with MF, RF, OM and CK treatments. The results indicated that abundance of cbhI and GH48 genes in different particle-size fractions with RF and OM treatments were significant increased, compared with CK treatment. There had significant positive correlation between soil humus C components (FA and HA) with abundance of cbhI and GH48 genes, and the o-alkyl C and AL% of FA were positively correlated with abundance of cbhI and GH48 genes. As a result, the community abundance of cbhI and GH48 genes were significant increased under combined application of crop residue and organic manure with chemical fertilizer condition.