MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents
Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents
Journal Article

Approaching isotropic charge transport of n-type organic semiconductors with bulky substituents

2021
Request Book From Autostore and Choose the Collection Method
Overview
Benzo[ de ]isoquinolino[1,8- gh ]quinolinetetracarboxylic diimide (BQQDI) is an n-type organic semiconductor that has shown unique multi-fold intermolecular hydrogen-bonding interactions, leading to aggregated structures with excellent charge transports and electron mobility properties. However, the strong intermolecular anchoring of BQQDI presents challenges for fine-tuning the molecular assembly and improving the semiconducting properties. Herein, we report the design and synthesis of two BQQDI derivatives with phenyl- and cyclohexyl substituents (Ph–BQQDI and Cy 6 –BQQDI), where the two organic semiconductors show distinct molecular assemblies and degrees of intermolecular orbital overlaps. In addition, the difference in their packing motifs leads to strikingly different band structures that give rise to contrasting charge-transport capabilities. More specifically, Cy 6 –BQQDI bearing bulky substituents exhibits isotropic intermolecular orbital overlaps resulting in equal averaged transfer integrals in both π-π stacking directions, even when dynamic disorders are taken into account; whereas Ph–BQQDI exhibits anisotropic averaged transfer integrals in these directions. As a result, Cy 6 –BQQDI shows excellent device performances in both single-crystalline and polycrystalline thin-film organic field-effect transistors up to 2.3 and 1.0 cm 2 V −1 s −1 , respectively. n-type organic semiconductors exhibiting two-dimensional isotropic charge transport are rarely reported. Here the authors show that using bulky substituents, BQQDI demonstrates near-isotropic charge transport, resilience to dynamic disorder, as well as high electron mobility both in single- and polycrystalline thin-film transistors.