MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mechanism of sodium nitroprusside regulating ginseng quality
Mechanism of sodium nitroprusside regulating ginseng quality
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mechanism of sodium nitroprusside regulating ginseng quality
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mechanism of sodium nitroprusside regulating ginseng quality
Mechanism of sodium nitroprusside regulating ginseng quality

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mechanism of sodium nitroprusside regulating ginseng quality
Mechanism of sodium nitroprusside regulating ginseng quality
Journal Article

Mechanism of sodium nitroprusside regulating ginseng quality

2025
Request Book From Autostore and Choose the Collection Method
Overview
The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the “king of all herbs”. The most important active components of ginseng are the secondary metabolite saponins, which are closely related to ecological stress. Unsuitable ecological stress can generate a large amount of reactive oxygen species (ROS), by which the secondary metabolism is regulated, and the quality of herbs can be significantly improved. The purpose of this study was to investigate the effect of sodium nitroprusside (SNP) treatment on the quality of fresh ginseng roots. In this study, 5-year-old fresh ginseng was exposed to 0.1, 0.5, and 2 mmol/L SNP, a nitric oxide (NO) donor for five consecutive days. SNP significantly increased the levels of O 2 ·− , H 2 O 2 , malondialdehyde (MDA), NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), peroxides (POD), ascorbate peroxidase (APX), glutathione reductase (GR), ascorbate (AsA) and GSH/GSSG. The main root treated by 0.5 mmol/L SNP for three days was the best, with the activities of the key enzymes of the ginsenoside synthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase (FPS), squalene synthase (SS), squalene epoxidase (SE), and dammarane diol-II synthase (DS) activities increased markedly; the ginsenosides Rg 1  + Re, Rb 1 , Rf, Rc, Rg 2  + Rh 1 and the total ginsenoside contents increased by 51.0%, 77.7%, 44.6%, 26.8%, 63.2% and 48.2%, respectively, but only a trace amount of the ginsenoside monomer Rb 2 decreased 23.4%. The fibrous roots treated by 0.1 mmol/L SNP for four days showed the best effect, HMGCR, FPS, SS, SE, and DS also increased significantly; ginsenosides Rg 1  + Re, Rb 1 , Ro, Rc, Rf, Rb 3 , Rb 2 , and total saponin contents increased 37.6%, 47.8%, 34.2%, 75.1%, 51.0%, 49.4%, 28.3%, and 20.4%, respectively. The 1,3-diphosphoglycerate (1,3-DPG) and phosphoenolpyruvate carboxylase (PEPC), related to primary metabolism, were also significantly elevated. The Morris water maze (MWM), histopathological analysis and oxidative stress indexes in brain tissues were used to evaluate the anti-aging effect, indicating that the SNP-treated ginseng further ameliorated D-gal-induced the impaired memory function and oxidative stress in mice, implying the efficacy of SNP-treated ginseng was better than untreated ginseng’s. SNP can build the physiological state of ginseng under ecological stress, stimulate the antioxidant protection mechanism, increase the secondary metabolites, and improve the quality of ginseng.