MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains
Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains
Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains
Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains
Journal Article

Luliconazole-loaded nanostructured lipid carrier: formulation, characterization, and in vitro antifungal evaluation against a panel of resistant fungal strains

2024
Request Book From Autostore and Choose the Collection Method
Overview
Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains. The LCZ-NLCs were synthesized using a modified emulsification-solvent evaporation technique. Characterization involved assessing parameters such as poly-dispersity index (PDI), zeta potential, encapsulation efficiency (EE %), Field Emission Scanning Electron Microscopy (FESEM), Differential Scanning Calorimetry (DSC) analysis, and Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR). Furthermore, in vitro drug release experiments, analysis of release kinetics, cytotoxicity assessments, and in vitro antifungal susceptibility tests were performed as part of the study. The findings indicated that LCZ-NLCs displayed nanoscale dimensions, uniform dispersion, and a favorable zeta potential. The encapsulation efficiency of LCZ in NLCs was approximately 90%. FESEM analysis revealed spherical nanoparticles with consistent shape. ATR-FTIR analysis indicated no chemical interaction between LCZ and excipients. In vitro drug release experiments demonstrated that LCZ-NLCs notably improved the drug’s dissolution rate. The stability testing confirmed consistent colloidal nanometer ranges in the LCZ-NLCs samples. Additionally, cytotoxicity tests revealed no toxicity within the tested concentration. Moreover, in vitro antifungal susceptibility tests demonstrated potent antifungal activity of LCZ-NLCs against the tested resistant fungal isolates. The study findings suggest that the LCZ-NLCs formulation developed in this research could be a promising topical treatment for superficial fungal infections, especially in cases of resistant infections. However, the study needs further ex vivo and in vivo tests to ensure safety and efficacy.