MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enhanced multi view 3D reconstruction with improved MVSNet
Enhanced multi view 3D reconstruction with improved MVSNet
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enhanced multi view 3D reconstruction with improved MVSNet
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enhanced multi view 3D reconstruction with improved MVSNet
Enhanced multi view 3D reconstruction with improved MVSNet

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enhanced multi view 3D reconstruction with improved MVSNet
Enhanced multi view 3D reconstruction with improved MVSNet
Journal Article

Enhanced multi view 3D reconstruction with improved MVSNet

2024
Request Book From Autostore and Choose the Collection Method
Overview
Although 3D reconstruction has been widely used in many fields as a key component of environment perception, existing technologies still have the potential for further improvement in 3D scene reconstruction. We propose an improved reconstruction algorithm based on the MVSNet network architecture. To glean richer pixel details from images, we suggest deploying a DE module integrated with a residual framework, which supplants the prevailing feature extraction mechanism. The DE module uses ECA-Net and dilated convolution to expand the receptive field range, performing feature splicing and fusion through the residual structure to retain the global information of the original image. Moreover, harnessing attention mechanisms refines the 3D cost volume's regularization process, bolstering the integration of information across multi-scale feature volumes, consequently enhancing depth estimation precision. When assessed our model using the DTU dataset, findings highlight the network's 3D reconstruction scoring a completeness (comp) of 0.411 mm and an overall quality of 0.418 mm. This performance is higher than that of traditional methods and other deep learning-based methods. Additionally, the visual representation of the point cloud model exhibits marked advancements. Trials on the Blended MVS dataset signify that our network exhibits commendable generalization prowess.
Publisher
Nature Publishing Group UK,Nature Publishing Group,Nature Portfolio