MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Optimization of preparation conditions and performance of a new degradable soil water retaining agent
Optimization of preparation conditions and performance of a new degradable soil water retaining agent
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Optimization of preparation conditions and performance of a new degradable soil water retaining agent
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Optimization of preparation conditions and performance of a new degradable soil water retaining agent
Optimization of preparation conditions and performance of a new degradable soil water retaining agent

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Optimization of preparation conditions and performance of a new degradable soil water retaining agent
Optimization of preparation conditions and performance of a new degradable soil water retaining agent
Journal Article

Optimization of preparation conditions and performance of a new degradable soil water retaining agent

2024
Request Book From Autostore and Choose the Collection Method
Overview
Using polyaspartic acid (PAsp) and bentonite (BT) as the main raw materials, a new type of degradable soil water retaining agent (PAsp-AA/BT) was synthesized by microwave radiation. The optimum synthesis conditions and comprehensive properties of PAsp-AA/BT were discussed and the structure and surface characteristics of PAspsp-AA/BT were characterized by FTIR, SEM, XRD and TGA in the paper. The results showed that the optimum synthesis conditions of PAsp-AA/BT were as follows: the dosages of polyaspartic acid (PAsp), bentonite (BT), initiator potassium persulfate, crosslinking agent N , N ′-methylene bisacrylamide was 5, 3, 0.3, 0.03%, respectively, the neutralization degree of acrylic acid was 75%, and the microwave power was 490W. Under this condition, the absorption ratio of the synthesized PAspsp-AA/BT in deionized water and 0.9% NaCl solution was 953 and 164 g/g, respectively. The synthesized PAsp-AA/BT had a high water absorption rate, good water retention and repeated water absorption, and the degradation rate in soil within 30 days reached 32.75%, with good degradation effect. The analysis of SEM, FT-IR, XRD and TGA showed that: the surface of PAsp-AA/BT was rough and had obvious pore structure, which was conducive to the diffusion of water molecules; polyaspartic acid, bentonite and acrylic acid were polymerized; the cross-linking structure was formed between polyaspartic acid, bentonite and acrylic acid; the product of PASP-AA/BT had good thermal stability. This study provides a new soil water retaining agent, which is helpful for the better development of soil water retaining agent research.