MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity
Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity
Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity
Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity
Journal Article

Catalytic peptide-based coacervates for enhanced function through structural organization and substrate specificity

2024
Request Book From Autostore and Choose the Collection Method
Overview
Liquid-liquid phase separation (LLPS) in living cells provides innovative pathways for synthetic compartmentalized catalytic systems. While LLPS has been explored for enhancing enzyme catalysis, its potential application to catalytic peptides remains unexplored. Here, we demonstrate the use of coacervation, a key LLPS feature, to constrain the conformational flexibility of catalytic peptides, resulting in structured domains that enhance peptide catalysis. Using the flexible catalytic peptide P7 as a model, we induce reversible biomolecular coacervates with structured peptide domains proficient in hydrolyzing phosphate ester molecules and selectively sequestering phosphorylated proteins. Remarkably, these coacervate-based microreactors exhibit a 15,000-fold increase in catalytic efficiency compared to soluble peptides. Our findings highlight the potential of a single peptide to induce coacervate formation, selectively recruit substrates, and mediate catalysis, enabling a simple design for low-complexity, single peptide-based compartments with broad implications. Moreover, LLPS emerges as a fundamental mechanism in the evolution of chemical functions, effectively managing conformational heterogeneity in short peptides and providing valuable insights into the evolution of enzyme activity and catalysis in prebiotic chemistry. This study shows that liquid-liquid phase separation enhances the catalytic efficiency of peptides by up to 15,000-fold through the formation of peptide coacervates. These microreactors can also selectively recruit phosphorylated proteins, providing insights into the evolution of enzymatic activity.