MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies
Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies
Journal Article

Large-scale deep learning analysis to identify adult patients at risk for combined and common variable immunodeficiencies

2023
Request Book From Autostore and Choose the Collection Method
Overview
Background Primary immunodeficiency (PI) is a group of heterogeneous disorders resulting from immune system defects. Over 70% of PI is undiagnosed, leading to increased mortality, co-morbidity and healthcare costs. Among PI disorders, combined immunodeficiencies (CID) are characterized by complex immune defects. Common variable immunodeficiency (CVID) is among the most common types of PI. In light of available treatments, it is critical to identify adult patients at risk for CID and CVID, before the development of serious morbidity and mortality. Methods We developed a deep learning-based method (named “TabMLPNet”) to analyze clinical history from nationally representative medical claims from electronic health records (Optum® data, covering all US), evaluated in the setting of identifying CID/CVID in adults. Further, we revealed the most important CID/CVID-associated antecedent phenotype combinations. Four large cohorts were generated: a total of 47,660 PI cases and (1:1 matched) controls. Results The sensitivity/specificity of TabMLPNet modeling ranges from 0.82-0.88/0.82-0.85 across cohorts. Distinctive combinations of antecedent phenotypes associated with CID/CVID are identified, consisting of respiratory infections/conditions, genetic anomalies, cardiac defects, autoimmune diseases, blood disorders and malignancies, which can possibly be useful to systematize the identification of CID and CVID. Conclusions We demonstrated an accurate method in terms of CID and CVID detection evaluated on large-scale medical claims data. Our predictive scheme can potentially lead to the development of new clinical insights and expanded guidelines for identification of adult patients at risk for CID and CVID as well as be used to improve patient outcomes on population level. Plain language summary Primary immunodeficiencies (PI) are disorders that weaken the immune system, increasing the incident of life-threatening infections, organ damage and the development of cancer and autoimmune diseases. Although PI is estimated to affect 1-2% of the global population, 70-90% of these patients remain undiagnosed. Many patients are diagnosed during adulthood, after other serious diseases have already developed. We developed a computational method to analyze the clinical history from a large group of people with and without PI. We focused on combined (CID) and common variable immunodeficiency (CVID), which are among the least studied and most common PI subtypes, respectively. We could identify people with CID or CVID and combinations of diseases and symptoms which could make it easier to identify CID or CVID. Our method could be used to more readily identify adults at risk of CID or CVID, enabling treatment to start earlier and their long-term health to be improved. Papanastasiou et al. develop a deep learning-based method to identify combined immunodeficiencies (CID) and common variable immunodeficiencies (CVID) from large-scale electronic health record data. Distinctive combinations of antecedent phenotypes associated with CID/CVID are identified that could improve early diagnosis.