MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data
Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data
Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data
Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data
Journal Article

Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data

2025
Request Book From Autostore and Choose the Collection Method
Overview
Early diagnosis and access to resources, support and therapy are critical for improving long-term outcomes for children with autism spectrum disorder (ASD). ASD is typically detected using a case-finding approach based on symptoms and family history, resulting in many delayed or missed diagnoses. While population-based screening would be ideal for early identification, available screening tools have limited accuracy. This study aims to determine whether machine learning models applied to health administrative and birth registry data can identify young children (aged 18 months to 5 years) who are at increased likelihood of developing ASD. We assembled the study cohort using individually linked maternal-newborn data from the Better Outcomes Registry and Network (BORN) Ontario database. The cohort included all live births in Ontario, Canada between April 1st, 2006, and March 31st, 2018, linked to datasets from Newborn Screening Ontario (NSO), Prenatal Screening Ontario (PSO), and Canadian Institute for Health Information (CIHI) (Discharge Abstract Database (DAD) and National Ambulatory Care Reporting System (NACRS)). The NSO and PSO datasets provided screening biomarker values and outcomes, while DAD and NACRS contained diagnosis codes and intervention codes for mothers and offspring. Extreme Gradient Boosting models and large-scale ensembled Transformer deep learning models were developed to predict ASD diagnosis between 18 and 60 months of age. Leveraging explainable artificial intelligence methods, we determined the impactful factors that contribute to increased likelihood of ASD at both an individual- and population-level. The final study cohort included 707,274 mother-offspring pairs, with 10,956 identified cases of ASD. The best-performing ensemble of Transformer models achieved an area under the receiver operating characteristic curve of 69.6% for predicting ASD diagnosis, a sensitivity of 70.9%, a specificity of 56.9%. We determine that our model can be used to identify an enriched pool of children with the greatest likelihood of developing ASD, demonstrating the feasibility of this approach.This study highlights the feasibility of employing machine learning models and routinely collected health data to systematically identify young children at high likelihood of developing ASD. Ensemble transformer models applied to health administrative and birth registry data offer a promising avenue for universal ASD screening. Such early detection enables targeted and formal assessment for timely diagnosis and early access to resources, support, or therapy.