MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models
Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models
Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models
Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models
Journal Article

Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models

2022
Request Book From Autostore and Choose the Collection Method
Overview
Future climate scenarios are predicting considerable threats to sustainable maize production in arid and semi-arid regions. These adverse impacts can be minimized by adopting modern agricultural tools to assess and develop successful adaptation practices. A multi-model approach (climate and crop) was used to assess the impacts and uncertainties of climate change on maize crop. An extensive field study was conducted to explore the temporal thermal variations on maize hybrids grown at farmer’s fields for ten sowing dates during two consecutive growing years. Data about phenology, morphology, biomass development, and yield were recorded by adopting standard procedures and protocols. The CSM-CERES, APSIM, and CSM-IXIM-Maize models were calibrated and evaluated. Five GCMs among 29 were selected based on classification into different groups and uncertainty to predict climatic changes in the future. The results predicted that there would be a rise in temperature (1.57–3.29 °C) during the maize growing season in five General Circulation Models (GCMs) by using RCP 8.5 scenarios for the mid-century (2040–2069) as compared with the baseline (1980–2015). The CERES-Maize and APSIM-Maize model showed lower root mean square error values (2.78 and 5.41), higher d -index (0.85 and 0.87) along reliable R 2 (0.89 and 0.89), respectively for days to anthesis and maturity, while the CSM-IXIM-Maize model performed well for growth parameters (leaf area index, total dry matter) and yield with reasonably good statistical indices. The CSM-IXIM-Maize model performed well for all hybrids during both years whereas climate models, NorESM1-M and IPSL-CM5A-MR, showed less uncertain results for climate change impacts. Maize models along GCMs predicted a reduction in yield (8–55%) than baseline. Maize crop may face a high yield decline that could be overcome by modifying the sowing dates and fertilizer (fertigation) and heat and drought-tolerant hybrids.