MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Theoretical framework for confined ion transport in two-dimensional nanochannels
Theoretical framework for confined ion transport in two-dimensional nanochannels
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Theoretical framework for confined ion transport in two-dimensional nanochannels
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Theoretical framework for confined ion transport in two-dimensional nanochannels
Theoretical framework for confined ion transport in two-dimensional nanochannels

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Theoretical framework for confined ion transport in two-dimensional nanochannels
Theoretical framework for confined ion transport in two-dimensional nanochannels
Journal Article

Theoretical framework for confined ion transport in two-dimensional nanochannels

2025
Request Book From Autostore and Choose the Collection Method
Overview
Quantitative understanding of ion transport mechanism is crucial for numerous applications of two-dimensional (2D) nanochannels, but is far from being resolved. Here, we formulated a theoretical framework for both self-diffusion and electromigration of hydrated monatomic ions in various 2D nanochannels (e.g. graphene, h-BN, g-C 3 N 4 , MoS 2 ), by molecular dynamics simulations. The self-diffusivity and mobility of ions in 2D nanochannels both increases linearly with ion-wall distance for small hydrated ions, yet keeps constant for large ones. The underlying mechanism reveals that when ions approach water-layers in nanochannels or possess large hydration shell, their hydration shells become severely distorted. This increases the free energy difference between hydration shell and the surrounding water-layers, water residence time in hydration shell and ion-water friction. Several involving quantitative relations were revealed, with Nernst–Einstein relation validated with both simulations and theoretical derivation. This work shows profound implications for various applications, including ion-sieving, nanodevices and nano-power generators, etc. Ion transport mechanism is crucial for various applications of two-dimensional nanochannels. Here, the authors show quantitatively, how ion-water friction regulates diffusion and electromigration of ions in nanochannels.