MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management
Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management
Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management
Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management
Journal Article

Highly migratory species predictive spatial modeling (PRiSM): an analytical framework for assessing the performance of spatial fisheries management

2021
Request Book From Autostore and Choose the Collection Method
Overview
Spatial management for highly migratory species (HMS) is difficult due to many species’ mobile habits and the dynamic nature of oceanic habitats. Current static spatial management areas for fisheries in the United States have been in place for extended periods of time with limited data collection inside the areas, making any analysis of their efficacy challenging. Spatial modeling approaches can be specifically designed to integrate species data from outside of closed areas to project species distributions inside and outside closed areas relative to the fishery. We developed HMS-PRedictive Spatial Modeling (PRiSM), which uses fishery-dependent observer data of species’ presence–absence, oceanographic covariates, and gear covariates in a generalized additive model (GAM) framework to produce fishery interaction spatial models. Species fishery interaction distributions were generated monthly within the domain of two HMS longline fisheries and used to produce a series of performance metrics for HMS closed areas. PRiSM was tested on bycatch species, including shortfin mako shark (Isurus oxyrinchus), billfish (Istiophoridae), and leatherback sea turtle (Dermochelys coriacea) in a pelagic longline fishery, and sandbar shark (Carcharhinus plumbeus), dusky shark (C. obscurus), and scalloped hammerhead shark (Sphyrna lewini) in a bottom longline fishery. Model validation procedures suggest PRiSM performed well for these species. The closed area performance metrics provided an objective and flexible framework to compare distributions between closed and open areas under recent environmental conditions. Fisheries managers can use the metrics generated by PRiSM to supplement other streams of information and guide spatial management decisions to support sustainable fisheries.