MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation
Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation
Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation
Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation
Journal Article

Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation

2021
Request Book From Autostore and Choose the Collection Method
Overview
Double membrane vesicles (DMVs) serve as replication organelles of plus-strand RNA viruses such as hepatitis C virus (HCV) and SARS-CoV-2. Viral DMVs are morphologically analogous to DMVs formed during autophagy, but lipids driving their biogenesis are largely unknown. Here we show that production of the lipid phosphatidic acid (PA) by acylglycerolphosphate acyltransferase (AGPAT) 1 and 2 in the ER is important for DMV biogenesis in viral replication and autophagy. Using DMVs in HCV-replicating cells as model, we found that AGPATs are recruited to and critically contribute to HCV and SARS-CoV-2 replication and proper DMV formation. An intracellular PA sensor accumulated at viral DMV formation sites, consistent with elevated levels of PA in fractions of purified DMVs analyzed by lipidomics. Apart from AGPATs, PA is generated by alternative pathways and their pharmacological inhibition also impaired HCV and SARS-CoV-2 replication as well as formation of autophagosome-like DMVs. These data identify PA as host cell lipid involved in proper replication organelle formation by HCV and SARS-CoV-2, two phylogenetically disparate viruses causing very different diseases, i.e. chronic liver disease and COVID-19, respectively. Host-targeting therapy aiming at PA synthesis pathways might be suitable to attenuate replication of these viruses. Double membrane vesicles (DMV) are used as replication organelles by several RNA viruses. Applying proteomics and lipidomics, Tabata and Prasad et al. find that two cellular acyltransferases (AGPAT1/2), responsible for synthesis of phosphatidic acid, play a role in the DMV-biogenesis of HCV and SARS-CoV-2, highlighting a common biogenesis mechanism for evolutionary distant positive-strand RNA viruses.