MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Predicting influenza with dynamical methods
Predicting influenza with dynamical methods
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Predicting influenza with dynamical methods
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Predicting influenza with dynamical methods
Predicting influenza with dynamical methods

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Predicting influenza with dynamical methods
Predicting influenza with dynamical methods
Journal Article

Predicting influenza with dynamical methods

2016
Request Book From Autostore and Choose the Collection Method
Overview
Background Prediction of influenza weeks in advance can be a useful tool in the management of cases and in the early recognition of pandemic influenza seasons. Methods This study explores the prediction of influenza-like-illness incidence using both epidemiological and climate data. It uses Lorenz’s well-known Method of Analogues, but with two novel improvements. Firstly, it determines internal parameters using the implicit near-neighbor distances in the data, and secondly, it employs climate data (mean dew point) to screen analogue near-neighbors and capture the hidden dynamics of disease spread. Results These improvements result in the ability to forecast, four weeks in advance, the total number of cases and the incidence at the peak with increased accuracy. In most locations the total number of cases per year and the incidence at the peak are forecast with less than 15 % root-mean-square (RMS) Error, and in some locations with less than 10 % RMS Error. Conclusions The use of additional variables that contribute to the dynamics of influenza spread can greatly improve prediction accuracy.