MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study
Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study
Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study
Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study
Journal Article

Hippocampal connectivity dynamics and volumetric alterations predict cognitive status in migraine: A resting-state fMRI study

2025
Request Book From Autostore and Choose the Collection Method
Overview
•Migraine patients demonstrated significantly lower scores on the MOCA test.•Hippocampal subfields were correlated with cognitive performance in migraine patients.•Hippocampal changes may shed light on potential dementia risks in migraine patients. The etiology of cognitive decline linked to migraine remains unclear, with a growing recurrence rate and potential increased dementia risk among sufferers. Cognitive dysfunction has recently gained attention as a significant problem among migraine sufferers that can be related to alterations in hippocampal function and structure. This study explores hippocampal subfield connectivity and volume changes in migraine patients. We recruited 90 individuals from Alanya University's Neurology Department, including 49 migraine patients and 41 controls, for functional and anatomical imaging. Using the CONN toolbox and FreeSurfer, we assessed functional connectivity and subfield volumes, respectively. Montreal Cognitive Assessment (MOCA) was used to assess cognition in the entire sample. As a result, migraine patients exhibited significantly lower MOCA scores compared to controls (p<.001). Also, we found significant differences in hippocampal subfields between migraine patients and control groups in terms of functional connectivity after adjusting for years of education; here we showed that the left CA3 showed higher connectivity with right MFG and right occipitolateral cortex. Furthermore, the connectivity of left fimbria with the left temporal lobe and hippocampus and the connectivity of the right hippocampal-tail with right insula, heschl's gyrus, and frontorbital cortex were lower in the migraineurs. Additionally, volumes of specific hippocampal subfields were significantly lower in the migraineurs (whole hippocampus p = 0.004, whole hippocampus head p = 0.003, right CA1 head p = 0.006, and right HATA p = 0.005) compared to controls. In conclusion, these findings indicate that migraine-associated cognitive impairment involves significant functional and structural brain changes, particularly in the hippocampus, which may heighten dementia risk. This pioneering study unveils critical hippocampal alterations linked to cognitive function in migraine sufferers, underscoring the potential for these changes to impact dementia development.