MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1
Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1
Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1
Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1
Journal Article

Retinal myeloid cells regulate tip cell selection and vascular branching morphogenesis via Notch ligand Delta-like 1

2019
Request Book From Autostore and Choose the Collection Method
Overview
During angiogenesis, single endothelial cells (EC) specialize into tip cells that guide vessel sprouting towards growth factor gradients and instruct the adjacent vessel stalk. The balance between tip and stalk cells is regulated by endothelial Notch signalling through the expression of Notch ligand Delta-like 4 (Dll4) in tip cells, which suppresses a tip cell fate in adjacent stalk cells. Here we show, using genetic reporter and conditional deletion strategies, that myeloid cells regulate tip cell numbers and Dll4 expression via the Notch ligand Dll1 during vascular development in the retina. Dll1 is selectively expressed by a subpopulation of retinal myeloid cells, which progressively localizes to the sprouting vascular network. Conditional, myeloid-specific deletion of Dll1 impairs endothelial Dll4 tip-stalk gradient resulting in an increase of endothelial tip cells and EC filopodia, accompanied by an increase in vascular density and branching. In vitro , co-culture of human EC with monocyte-derived macrophages induced Dll1 upregulation in macrophages and Dll4 upregulation and an endothelial tip cell signature in EC. Furthermore, culturing human EC on recombinant DLL1 induced endothelial Dll4 expression and a tip cell program, indicating that changes are Dll1-dependent. Thus, myeloid cells regulate tip cell fate and angiogenesis through expression of Notch ligand Dll1.