MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides
Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides
Journal Article

Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides

2024
Request Book From Autostore and Choose the Collection Method
Overview
Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerful, but are inherently limited by the cost and quality of annotations used for training. Therefore, we present Histomorphological Phenotype Learning, a self-supervised methodology requiring no labels and operating via the automatic discovery of discriminatory features in image tiles. Tiles are grouped into morphologically similar clusters which constitute an atlas of histomorphological phenotypes (HP-Atlas), revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. These properties are maintained in a multi-cancer study. Supervised deep learning models hold promise for the interpretation of histology images, but are limited by cost and quality of training datasets. Here, the authors develop a self-supervised deep learning method that can automatically discover features in cancer histology images that are associated with diagnosis, survival, and molecular phenotypes.