MbrlCatalogueTitleDetail

Do you wish to reserve the book?
High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS
High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS
High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS
High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS
Journal Article

High-resolution, ultrasensitive and quantitative DNA double-strand break labeling in eukaryotic cells using i-BLESS

2021
Request Book From Autostore and Choose the Collection Method
Overview
DNA double-strand breaks (DSBs) are implicated in various physiological processes, such as class-switch recombination or crossing-over during meiosis, but also present a threat to genome stability. Extensive evidence shows that DSBs are a primary source of chromosome translocations or deletions, making them a major cause of genomic instability, a driving force of many diseases of civilization, such as cancer. Therefore, there is a great need for a precise, sensitive, and universal method for DSB detection, to enable both the study of their mechanisms of formation and repair as well as to explore their therapeutic potential. We provide a detailed protocol for our recently developed ultrasensitive and genome-wide DSB detection method: immobilized direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing (i-BLESS), which relies on the encapsulation of cells in agarose beads and labeling breaks directly and specifically with biotinylated linkers. i-BLESS labels DSBs with single-nucleotide resolution, allows detection of ultrarare breaks, takes 5 d to complete, and can be applied to samples from any organism, as long as a sufficient amount of starting material can be obtained. We also describe how to combine i-BLESS with our qDSB-Seq approach to enable the measurement of absolute DSB frequencies per cell and their precise genomic coordinates at the same time. Such normalization using qDSB-Seq is especially useful for the evaluation of spontaneous DSB levels and the estimation of DNA damage induced rather uniformly in the genome (e.g., by irradiation or radiomimetic chemotherapeutics). This protocol describes a genome-wide approach for ultrasensitive and quantitative detection of DNA double-strand breaks (DSBs) that relies on encapsulating cells in agarose beads and labeling breaks with biotinylated adapters.