MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions
Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions
Journal Article

Repurposing pitavastatin and atorvastatin to overcome chemoresistance of metastatic colorectal cancer under high glucose conditions

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Colorectal cancer (CRC) poses a significant clinical challenge because of drug resistance, which can adversely impact patient outcomes. Recent research has shown that abnormalities within the tumor microenvironment, especially hyperglycemia, play a crucial role in promoting metastasis and chemoresistance, and thereby determine the overall prognosis of patients with advanced CRC. Methods This study employs data mining and consensus molecular subtype (CMS) techniques to identify pitavastatin and atorvastatin as potential agents for targeting high glucose-induced drug resistance in advanced CRC cells. CRC cells maintained under either low or high glucose conditions were established and utilized to assess the cytotoxic effects of pitavastatin and atorvastatin, both with and without 5-fluorouracil (5-FU). CRC 3D spheroids cultured were also included to demonstrate the anti-drug resistance of pitavastatin and atorvastatin. Results A bioinformatics analysis identified pitavastatin and atorvastatin as promising drug candidates. The CMS4 CRC cell line SW480 (SW480-HG) was established and cultured under high glucose conditions to simulate hyperglycemia-induced drug resistance and metastasis in CRC patients. Pitavastatin and atorvastatin could inhibit cell proliferation and 3D spheroid formation of CMS4 CRC cells under high glucose conditions. In addition, both pitavastatin and atorvastatin can synergistically promote the 5-FU-mediated cytotoxic effect and inhibit the growth of 5-FU-resistant CRC cells. Mechanistically, pitavastatin and atorvastatin can induce apoptosis and synergistically promote the 5-FU-mediated cytotoxic effect by activating autophagy, as well as the PERK/ATF4/CHOP signaling pathway while decreasing YAP expression. Conclusion This study highlights the biomarker-guided precision medicine strategy for drug repurposing. Pitavastatin and atorvastatin could be used to assist in the treatment of advanced CRC, particularly with CMS4 subtype CRC patients who also suffer from hyperglycemia. Pitavastatin, with an achievable dosage used for clinical interventions, is highly recommended for a novel CRC therapeutic strategy.