MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia
Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia
Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia
Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia
Journal Article

Endocannabinoid and Opioid System Interactions in Exercise-Induced Hypoalgesia

2018
Request Book From Autostore and Choose the Collection Method
Overview
Abstract Objective The purpose of this study was to examine the interaction between the endogenous opioid and endocannabinoid (eCB) systems in a pain modulatory process known as exercise-induced hypoalgesia (EIH). Design Randomized controlled trial. Setting Clinical research unit in a hospital. Subjects Fifty-eight healthy men and women (mean age = 21 ± 3 years) participated in this study. Methods Participants were administered (randomized, double-blind, counterbalanced procedure) an opioid antagonist (i.e., naltrexone) and a placebo prior to performing pain testing and isometric exercise. Results Results indicated that 2-arachidonoylglycerol (2-AG) and 2-oleoylglycerol (2-OG) increased significantly (P < 0.05) following exercise in both placebo and naltrexone conditions. In comparison, N-arachidonylethanolamine (AEA) and oleoylethanolamine (OEA) increased significantly (P < 0.05) following exercise in the placebo condition but not the naltrexone condition. There were no significant (P > 0.05) differences in palmitolethanolamine (PEA) between the placebo and naltrexone conditions. Conclusions As reductions in pain (i.e., EIH) were observed following both conditions, these results suggest that the opioid system may not be the primary system involved in exercise-induced hypoalgesia and that 2-AG and 2-OG could contribute to nonopioid exercise-induced hypoalgesia. Moreover, as exercise-induced increases in AEA and OEA were blocked by naltrexone pretreatment, this suggests that the opioid system may be involved in the increase of AEA and OEA following exercise.