MbrlCatalogueTitleDetail

Do you wish to reserve the book?
New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model
New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model
New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model
New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model
Journal Article

New approach methodologies for in vitro toxicity screening of nanomaterial using a pulmonary three-dimensional floating extracellular matrix model

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Nanomaterials offer increasing applications across diverse sectors, including food science, medicine, and electronics. Environmental risk assessment is crucial for ensuring the safety and sustainability of nanomaterials. However, high-throughput screening (HTS) of their potential toxicity remains challenging owing to their unique physicochemical properties. Results This study introduces a novel pulmonary three-dimensional (3D) floating extracellular matrix (ECM) model utilizing a 384-pillar/well platform for HTS of nanotoxicity. Compared with conventional HTS models based on two-dimensional (2D) cells, the 3D model developed in this study successfully addressed the issues related to the aggregation and sedimentation of nanoparticles and their possible optical interference with the toxicity assays. Using 20 nm silica nanoparticles (SiNPs), we assessed cell viability and nanoparticle uptake in both serum-containing and serum-free culture media. While the 2D model showed high SiNPs toxicity regardless of the media composition, the pulmonary 3D floating ECM model demonstrated variable toxicities that depended on the SiNPs behaviors under different conditions. Conclusions By reducing the uncertainties associated with the sedimentation and optical interference of nanomaterials, our 3D model provided a more precise analysis of cytotoxicity. This study highlights the potential of using new approach methodologies and improved HTS approaches to enhance the efficiency and accuracy of risk assessment protocols for emerging nanomaterials. Graphical Abstract