MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis
Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis
Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis
Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis
Journal Article

Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis

2021
Request Book From Autostore and Choose the Collection Method
Overview
Stably acquired mutations in hematopoietic cells represent substrates of selection that may lead to clonal hematopoiesis (CH), a common state in cancer patients that is associated with a heightened risk of leukemia development. Owing to technical and sample size limitations, most CH studies have characterized gene mutations or mosaic chromosomal alterations (mCAs) individually. Here we leverage peripheral blood sequencing data from 32,442 cancer patients to jointly characterize gene mutations ( n  = 14,789) and mCAs ( n  = 383) in CH. Recurrent composite genotypes resembling known genetic interactions in leukemia genomes underlie 23% of all detected autosomal alterations, indicating that these selection mechanisms are operative early in clonal evolution. CH with composite genotypes defines a patient group at high risk of leukemia progression (3-year cumulative incidence 14.6%, CI: 7–22%). Multivariable analysis identifies mCA as an independent risk factor for leukemia development (HR = 14, 95% CI: 6–33, P  < 0.001). Our results suggest that mCA should be considered in conjunction with gene mutations in the surveillance of patients at risk of hematologic neoplasms. Patients with solid cancers have high rates of clonal haematopoiesis associated with increased risk of secondary leukemias. Here, by using peripheral blood sequencing data from patients with solid non-hematologic cancer, the authors profile the landscape of mosaic chromosomal alterations and gene mutations, defining patients at high risk of leukemia progression.