MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor
Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor
Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor
Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor
Journal Article

Vascular smooth muscle-inspired architecture enables soft yet tough self-healing materials for durable capacitive strain-sensor

2023
Request Book From Autostore and Choose the Collection Method
Overview
Catastrophically mechanical failure of soft self-healing materials is unavoidable due to their inherently poor resistance to crack propagation. Here, with a model system, i.e., soft self-healing polyurea, we present a biomimetic strategy of surpassing trade-off between soft self-healing and high fracture toughness, enabling the conversion of soft and weak into soft yet tough self-healing material. Such an achievement is inspired by vascular smooth muscles, where core-shell structured Galinstan micro-droplets are introduced through molecularly interfacial metal-coordinated assembly, resulting in an increased crack-resistant strain and fracture toughness of 12.2 and 34.9 times without sacrificing softness. The obtained fracture toughness is up to 111.16 ± 8.76 kJ/m 2 , even higher than that of Al and Zn alloys. Moreover, the resultant composite delivers fast self-healing kinetics (1 min) upon local near-infrared irradiation, and possesses ultra-high dielectric constants (~14.57), thus being able to be fabricated into sensitive and self-healing capacitive strain-sensors tolerant towards cracks potentially evolved in service. Catastrophically mechanical failure, of soft self-healing materials often stems from its poor resistance to crack, propagation. Here, the authors present a strategy of surpassing trade-off, between soft self-healing and high fracture toughness, enabling the, conversion of soft and weak into soft yet tough self-healing materials.