MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation
Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation
Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation
Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation
Journal Article

Acute Oxidative Stress Can Paradoxically Suppress Human NRF2 Protein Synthesis by Inhibiting Global Protein Translation

2023
Request Book From Autostore and Choose the Collection Method
Overview
The NRF2 transcription factor is a master regulator of the cellular oxidant/electrophile response and a drug target for the prevention/treatment of chronic diseases. A major mechanism of NRF2 activation is its escape from rapid degradation, and newly synthesized NRF2 induces cytoprotective protein expression through its cognate antioxidant response elements (AREs). However, oxidative stress can also inhibit global protein translation, thereby potentially inhibiting NRF2 protein accumulation. H2O2 has been shown to be a relatively weak inducer of NRF2 in comparison with electrophiles. In the current study, we evaluated whether levels of H2O2 that activate the NRF2/ARE pathway inhibit NRF2 protein synthesis in HaCaT keratinocytes. A weak maximum induction was observed for H2O2 in comparison with electrophiles, both for NRF2 protein accumulation and ARE reporter activation (~10-fold compared to ≥100-fold activation). At similar H2O2 concentrations, both NRF2 protein synthesis and global protein synthesis were inhibited. The manganese porphyrin antioxidant MnTMPyP rescued both global protein synthesis and NRF2 protein synthesis from H2O2 inhibition and increased ARE reporter activation. Similar results were observed for the diphenol di-tert-butylhydroquinone (dtBHQ). In conclusion, induction of the NRF2/ARE pathway by H2O2 and dtBHQ-derived oxidative species can be limited by inhibition of NRF2 protein synthesis, likely by arrest of global protein synthesis.