MbrlCatalogueTitleDetail

Do you wish to reserve the book?
The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances
The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances
The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances
The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances
Journal Article

The coupling and competition of crystallization and phase separation, correlating thermodynamics and kinetics in OPV morphology and performances

2021
Request Book From Autostore and Choose the Collection Method
Overview
The active layer morphology transition of organic photovoltaics under non-equilibrium conditions are of vital importance in determining the device power conversion efficiency and stability; however, a general and unified picture on this issue has not been well addressed. Using combined in situ and ex situ morphology characterizations, morphological parameters relating to kinetics and thermodynamics of morphology evolution are extracted and studied in model systems under thermal annealing. The coupling and competition of crystallization and demixing are found to be critical in morphology evolution, phase purification and interfacial orientation. A unified model summarizing different phase diagrams and all possible kinetic routes is proposed. The current observations address the fundamental issues underlying the formation of the complex multi-length scale morphology in bulk heterojunction blends and provide useful morphology optimization guidelines for processing devices with higher efficiency and stability. Designing efficient blue perovskite LEDs by using mixed halides perovskite is still a challenge, limited mainly by the phase segregation issue. Here, the authors demonstrate in situ fabrication of quasi-2D CsPbClBr2 nanocrystal films with mixed ligands to overcome the constraint.