MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol
Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol
Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol
Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol
Journal Article

Vacuole and mitochondria patch protein Mcp1 of Saccharomyces boulardii impairs the oxidative stress response of Candida albicans by regulating 2-phenylethanol

2025
Request Book From Autostore and Choose the Collection Method
Overview
Background Vacuole and mitochondria patch (vCLAMP) protein Mcp1 is crucial in eukaryotic cells response to environmental stress, but the mechanism of Mcp1 in Saccharomyces boulardii ( S. boulardii ) against pathogenic fungi is unclear. Results This work first explored the role of Mcp1 in S. boulardii against Candida albicans ( C. albicans ). The results showed that Mcp1 located on the vacuolar and mitochondrial membrane of S. boulardii . Overexpression of Mcp1 inhibited the adhesion and hyphal formation of C. albicans in vitro. The mice model of intestinal infection revealed that WT- pGK1-MCP1 mutant enhanced the ability of S. boulardii antagonize C. albicans infecting gut. High performance liquid chromatography-mass spectrometry analysis demonstrated that overexpressing Mcp1 promoted the production of 2-phenylethanol. The latter is a secondary metabolite of S. boulardii , and can inhibit the adhesion and biofilm formation of C. albicans . The reverse transcription polymerase chain reaction and western blotting results confirmed Mcp1 promoted the production of 2-phenylethanol by regulating the expression level of Aro10. Notably, RNA-sequencing and Gene Ontology enrichment analyses showed that 2-phenylethanol impaired the oxidative stress response of C. albicans . Conclusion This work reveals the critical role of Mcp1 in S. boulardii against C. albicans by regulating 2-phenylethanol metabolism, which provide a theoretical basis for S. boulardii as antifungal biologic therapy to prevent and treat of Candida infection.

MBRLCatalogueRelatedBooks