MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard
A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard
Journal Article

A mobile health monitoring-and-treatment system based on integration of the SSN sensor ontology and the HL7 FHIR standard

2019
Request Book From Autostore and Choose the Collection Method
Overview
Background Mobile health (MH) technologies including clinical decision support systems (CDSS) provide an efficient method for patient monitoring and treatment. A mobile CDSS is based on real-time sensor data and historical electronic health record (EHR) data. Raw sensor data have no semantics of their own; therefore, a computer system cannot interpret these data automatically. In addition, the interoperability of sensor data and EHR medical data is a challenge. EHR data collected from distributed systems have different structures, semantics, and coding mechanisms. As a result, building a transparent CDSS that can work as a portable plug-and-play component in any existing EHR ecosystem requires a careful design process. Ontology and medical standards support the construction of semantically intelligent CDSSs. Methods This paper proposes a comprehensive MH framework with an integrated CDSS capability. This cloud-based system monitors and manages type 1 diabetes mellitus. The efficiency of any CDSS depends mainly on the quality of its knowledge and its semantic interoperability with different data sources. To this end, this paper concentrates on constructing a semantic CDSS based on proposed FASTO ontology. Results This realistic ontology is able to collect, formalize, integrate, analyze, and manipulate all types of patient data. It provides patients with complete, personalized, and medically intuitive care plans, including insulin regimens, diets, exercises, and education sub-plans. These plans are based on the complete patient profile. In addition, the proposed CDSS provides real-time patient monitoring based on vital signs collected from patients’ wireless body area networks. These monitoring include real-time insulin adjustments, mealtime carbohydrate calculations, and exercise recommendations. FASTO integrates the well-known standards of HL7 fast healthcare interoperability resources (FHIR), semantic sensor network (SSN) ontology, basic formal ontology (BFO) 2.0, and clinical practice guidelines. The current version of FASTO includes 9577 classes, 658 object properties, 164 data properties, 460 individuals, and 140 SWRL rules. FASTO is publicly available through the National Center for Biomedical Ontology BioPortal at https://bioportal.bioontology.org/ontologies/FASTO . Conclusions The resulting CDSS system can help physicians to monitor more patients efficiently and accurately. In addition, patients in rural areas can depend on the system to manage their diabetes and emergencies.