MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants
Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants
Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants
Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants
Journal Article

Comparative genomics of multidrug-resistant Enterococcus spp. isolated from wastewater treatment plants

2020
Request Book From Autostore and Choose the Collection Method
Overview
Background Wastewater treatment plants (WWTPs) are considered hotspots for the environmental dissemination of antimicrobial resistance (AMR) determinants. Vancomycin-Resistant Enterococcus (VRE) are candidates for gauging the degree of AMR bacteria in wastewater. Enterococcus faecalis and Enterococcus faecium are recognized indicators of fecal contamination in water. Comparative genomics of enterococci isolated from conventional activated sludge (CAS) and biological aerated filter (BAF) WWTPs was conducted. Results VRE isolates, including E. faecalis ( n  = 24), E. faecium ( n  = 11), E. casseliflavus (n = 2) and E. gallinarum (n = 2) were selected for sequencing based on WWTP source, species and AMR phenotype. The pangenomes of E. faecium and E. faecalis were both open. The genomic fraction related to the mobilome was positively correlated with genome size in E. faecium ( p  < 0.001) and E. faecalis ( p  < 0.001) and with the number of AMR genes in E. faecium ( p  = 0.005). Genes conferring vancomycin resistance, including van A and van M ( E. faecium ), van G ( E. faecalis ), and van C ( E. casseliflavus / E. gallinarum ), were detected in 20 genomes. The most prominent functional AMR genes were efflux pumps and transporters. A minimum of 16, 6, 5 and 3 virulence genes were detected in E. faecium , E. faecalis , E. casseliflavus and E. gallinarum, respectively. Virulence genes were more common in E. faecalis and E. faecium , than E. casseliflavus and E. gallinarum . A number of mobile genetic elements were shared among species. Functional CRISPR/Cas arrays were detected in 13 E. faecalis genomes, with all but one also containing a prophage. The lack of a functional CRISPR/Cas arrays was associated with multi-drug resistance in E. faecium . Phylogenetic analysis demonstrated differential clustering of isolates based on original source but not WWTP. Genes related to phage and CRISPR/Cas arrays could potentially serve as environmental biomarkers. Conclusions There was no discernible difference between enterococcal genomes from the CAS and BAF WWTPs. E. faecalis and E. faecium have smaller genomes and harbor more virulence, AMR, and mobile genetic elements than other Enterococcus spp .